บทที่ 3 ขั้นตอนและวิธีการดำเนินงาน

จากทฤษฏีและข้อมูลที่เกี่ยวข้อง ทางผู้จัดทำโครงงานการออกแบบและสร้างแขนหุ่นยนต์ น้ำหนักเบา ได้มีการวางแผนการดำเนินงานเพื่อที่จะเป็นแนวทางในการปฏิบัติงานเพื่อให้โครงงาน สำเร็จตามวัตถุประสงค์ที่วางไว้ ดังแสดงในผังงาน

3.1 ขั้นตอนในการดำเนินงาน

ภาพที่ 3-1 บล็อกไดอะแกรมการดำเนินงาน

ภาพที่ 3-2 บล็อกไดอะแกรมการดำเนินงาน (ต่อ)

3.2 วิธีการดำเนินงาน

3.2.1 ศึกษาข้อมูล

- ความรู้พื้นฐานเกี่ยวกับหุ่นยนต์
- ทฤษฎีมอเตอร์ไฟฟ้ากระแสสลับ
- ทฤษฎีการวิเคราะห์การเคลื่อนที่
- ทฤษฎีระบบส่งกำลัง
- ทฤษฎีการเขียนไมโครคอนโทรลเลอร์ ARM 7 TDMI-S เบอร์ LPC2103

- การเขียนโปรแกรมภาษา (C Language) บนคอมพิวเตอร์เพื่อควบคุมการทำงาน ของหุ่นยนต์

3.2.2 ออกแบบโครงสร้าง

แขนหุ่นยนต์ที่ทำการออกแบบ นี้เป็นแขนหุ่นยนต์ประเภทที่มีการเคลื่อนที่ในพิกัดหมุน (Revolute or Articulated Coordinates : RRR) จะประกอบไปด้วยแกนหมุน 6 แกน ทุกแกน การเคลื่อนที่เป็นแบบหมุน (Revolute) รูปแบบการเคลื่อนที่คล้ายกับแขนคน ซึ่งประกอบด้วย ช่วงเอว ท่อนแขนบน ท่อนแขนล่าง และข้อมือ

แขนหุ่นยนต์ประเภทนี้เนื่องจากใช้งานได้กว้างขวางในระบบอุตสาหกรรม เพราะสามารถเข้าถึง ตำแหน่งต่าง ๆ ได้ดีซึ่งแขนหุ่นยนต์ประเภทนี้จะมีข้อดีคือ มีความยืดหยุ่นสูงในการเข้าไปยัง จุดต่าง ๆ เพราะทุกแกนจะเคลื่อนที่ในลักษณะของการหมุน จึงมีพื้นที่การทำงานมากทำให้สามารถเข้าถึง ชิ้นงานทั้งจากด้านบนถึงด้านล่าง

ภาพที่ 3-3 ขั้นตอนการออกแบบโครงสร้าง

ภาพที่ 3-4 ภาพรวมของแขนหุ่นยนต์ที่ออกแบบ

จากภาพที่ 3-4 จะเห็นได้ว่าชิ้นส่วนแขนหุ่นยนต์ จะประกอบไปด้วยแกนหมุน 6 แกน รูปแบบ การเคลื่อนที่คล้ายกับแขนคน ซึ่งประกอบด้วยช่วงเอว ท่อนแขนบน ท่อนแขนล่าง และข้อมือ จากนั้นก็ใช้โปรแกรม Solid Work 2012 ในการออกแบบชิ้นส่วนแต่ละชิ้น เพื่อนำแบบที่ได้ มาตัด เป็นชิ้นส่วนของแขนหุ่นยนต์

ภาพที่ 3-5 แบบแขนหุ่นยนต์ Link 1

3.2.2.2 การออกแบบแขนหุ่นยนต์ Link 2

ภาพที่ 3-6 แบบแขนหุ่นยนต์ Link 2

3.2.2.3 การออกแบบแขนหุ่นยนต์ Link 3

ภาพที่ 3-7 แบบแขนหุ่นยนต์ Link 3

3.2.2.4 การออกแบบแขนหุ่นยนต์ Link 4

3.2.2.5 การออกแบบแขนหุ่นยนต์ Link 5

ภาพที่ 3-9 แบบแขนหุ่นยนต์ Link 5

3.2.2.6 การออกแบบแขนหุ่นยนต์ Link 6

ภาพที่ 3-10 แบบแขนหุ่นยนต์ Link 6

ในการออกแบบและสร้างแขนหุ่นยนต์ จะต้องคำนึงถึงขอบเขตการทำงานของแขนหุ่นยนต์ ว่ามีลักษณะในการทำงานอย่างไร จากภาพที่ 3-11 จะแสดงขอบเขตการทำงานของแขนหุ่นยนต์

ภาพที่ 3-11 ขอบเขตการทำงานของแขนหุ่นยนต์

ภาพที่ 3-12 ขอบเขตการทำงาน

3.2.2.7 ลักษณะการเคลื่อนที่ของมอเตอร์ทั้ง 6 ตัวก) มอเตอร์ตัวที่ 1 จะอยู่ที่ฐานจะสามารถหมุนไปได้ทางด้านซ้ายและขวา

ได้ ±110 องศา

- ข) มอเตอร์ตัวที่ 2. เคลื่อนที่ขึ้นลงได้ ±100 องศา
- ค) มอเตอร์ตัวที่ 3. เคลื่อนที่ขึ้นลงได้ ±130 องศา
- ง) มอเตอร์ตัวที่ 4. หมุนรอบได้ ±160 องศา
- จ) มอเตอร์ตัวที่ 5. เคลื่อนที่ขึ้นลงได้ ±130 องศา
- ฉ) มอเตอร์ตัวที่ 6. หมุนรอบได้ ±180 องศา

3.2.2.8 อลูมิเนียม (Aluminum) ที่ใช้ในการทำโครงสร้าง ของแขนกลในครั้งนี้ ใช้อลูมิเนียมเกรด 5083 โดยอลูมิเนียมเกรด 5083 เป็นโลหะผสมระหว่างอะลูมิเนียม ที่มีแมกนีเซียม (Magnesium) แมงกานีส (Manganese) และโครเมียม (Chromium) เป็นส่วนผสมสำคัญ ผ่านกระบวนการขึ้นรูปเย็นเพื่อให้มีความแข็งแรงสูงสุดและอบเสถียร เพื่อช่วยรักษาคุณสมบัติทางกล ให้คงที่และเพื่อให้มีความต้านทานต่อการกัดกร่อนที่ดีเยี่ยม

- 3.2.2.9 คุณลักษณะเด่น (Significant Characteristics)
 - ก) มีน้ำหนักเบากว่าเหล็กมาก ประมาณ 3 เท่า
 - ข) มีค่าการนำความร้อนและไฟฟ้าสูงกว่าเหล็ก

- ค) มีความแข็งแรงสูง
- ง) ต้านทานต่อการกัดกร่อนดีเยี่ยม
- จ) ความสามารถในการเชื่อมดีมาก
- ความสามารถในการขึ้นรูปเย็นดีพอใช้
- ช) ความสามารถในการตัดกลึงพอใช้
- 3.2.3 จัดซื้ออุปกรณ์ Drive Servo Motor

ภาพที่ 3-13 ขั้นตอนการจัดซื้ออุปกรณ์ Drive Servo Motor

3.2.3.1 ชุด Drive Servo Motor ที่ทำการจัดซื้อจะประกอบไปด้วย Drive Servo Motor จำนวน 6 ชุด โดยแต่ละชุดจะประกอบไปด้วย

- ก) Drive Servo ยี่ห้อ Mitsubishi รุ่น MR-J10A1 100 Watt ,100 V Servo Motor ยี่ห้อ Mitsubishi รุ่น HA-FE13 ,100 V (1 ตัว)
- ข) Drive Servo ยี่ห้อ Yaskawa รุ่น SGDA-01BP 100 Watt ,100 V Servo Motor ยี่ห้อ Yaskawa รุ่น SGM-01B3G10 ,100 V (2 ตัว)
- ค) Drive Servo ยี่ห้อ Yaskawa รุ่น SGDA-01AP 100 Watt , 200 V
 Servo Motor ยี่ห้อ Yaskawa รุ่น SGME-01AFNS11 , 200 V (2 ตัว)
- ง) Drive Servo ยี่ห้อ Yaskawa รุ่น SGDA-A2CP 20 Watt ,24 V DC
 Servo Motor ยี่ห้อ Yaskawa รุ่น SGMM-A2C3J6 , 24 V DC (1 ตัว)

ภาพที่ 3-14 ชุด Drive servo motor

ภาพที่ 3-15 ชุด Drive servo ทั้ง 6 ตัว

ในการทดสอบการทำงานของชุด Drive Servo Motor จะทำการทดสอบโดยใช้โปรแกรม Sigma Win เพื่อเป็นการทดสอบว่าชุด Drive Servo Motor ที่เราจัดซื้อมาใช้งานได้หรือไม่โดย มีขั้นตอนการทดสอบดังนี้

เมื่อเข้าโปรแกรม Sigma Win จะแสดงหน้าต่างภาพที่ 3-16

ภาพที่ 3-16 หน้าต่างโปรแกรม Sigma Win

กด 🏄 เพื่อหา Servo Drive ที่เชื่อมต่ออยู่ด้วย RS-232 เมื่อเจอแล้วกด OK แสดงดัง ภาพที่ 3-17

#	Select which Sense Amplifier to convect Image: Convert 10xdt Model Stripe Younge Proves 0 SLGA=PP State 10
	CK Erect Retar
9 🙆 🚳 🚆 🛛	🕻 🛞 🔧 🥂 📴 💞 S 🌆 🛛 🖏

ภาพที่ 3-17 Servo Drive ที่เชื่อมต่ออยู่ด้วย RS-232

กดปุ่ม Ċ เพื่อทดสอบให้มอเตอร์หมุนซ้าย-ขวา แสดงดังภาพที่ 3-18

0 🖬 🖉 🖗 🖗	A 🕻 🕻	1001	+ + C	(=	\sim							
99999			0		\sim							
Feedback Speed	Servo Statu	4 1/0 Als	ns Connu	ators and Encod	ers User Parameters							
C Speed Ref		Calegory	Co No.	Code	Description	Value	Units	Servo	Min	Max	Delault	
E Rel Pulse Scend	-	Swiches	Cn01	MEN1	Memory Switch 1	0000		0000			0000	
C Incelled	-	Swiches	Cn02	MEM2	Memory Switch 2	(000)		0000			0000	
Toquene	-	Gain	Cn04	LOOPHZ	Speed Loop Gain	30	Hz	30	1	2000	80	
Pas Emor	-	Gain	Cn05	PITME	Speed Loop Integration Time Constant	20	ma	20	2	1000	20	
E Bare Block	-	Gan	ColA	POSGN	Peotion Loop Gian	90	1/1	90	1	200	4)	
E Mater Russing	-	Gan	ColC	BIASLY	Bias Level	0	rpm	0	0	450	0	
E Burthand	-	Gan	Cn10	FFGN	FeedForward	0	2	0	0	100	0	
I FOS UVINTUAVIE	-	Gan	Cn25	ALCIM	Poston Kelerence Acc/Dec Constant	0	Q Tea	0	0	640	0	
l NegOvertavel		Gan	Ch 27	FINE FOR	FeedTorwardFilterTime Conclant	0	0.1mc	0	0	640	0	
		loidhe	ChO5	ENDLING	Emergency Stop Torque	206	×	206				
F XON		1000.0	ChOI	TUNE	Forward Rotation Forgue Land		<u>.</u>					
		10/04	0.13	TOOLS	Heverte Hotation I orgae Link	200	4					
		Toole	Coll	CIME	Forward External Forward and	100	¥	100			100	
0.001 1.001		Toote	Colla	CIMP	Persona External France Lind	100	-	100	0	200	100	
T ALM		Casarda	CART	SECARC	Coli Crat Tara (Accalentica)		•		0	10000		
		Sequence	CA-22	SESCER	Sol Stat Tata Databasisal	0		0	0	10000	ě	
	-	Security	CACR	TEONIX	Zeo Sceni Level	20		n	1	5000	20	
		Catanca	Ce12	RRITIM	Roke to Race Rivis Waters Tene	0	10ee	0	0	50	0	
		Securica	Calls	RRESPO	Roke Scool	100	rm.	100	0	5000	100	
	-	Securce	Colf	BRtW/4	Boke Watno Tere	50	10mt	50	10	100	50	
	-	Sequence	Co18	CONLY	Positioning Completion Width	1	ref units	1	0	250	1	
	-	Pulse	ChOA	PGRAT	PG Division Ratio	360	P/R	360	16	32768	2048	
	-	Pulse	Coll	PULSNO	Encoder Pulse Count	2048	P/R	2043	513	32768	2048	
	1.1	Pulse	Cn24	RA18	Electronic Gear Ratio (Numerator)	4	-	4	1	65535	4	
	1.1	Pulse	0.25	RATA	Electronic Gear Ratio (Denominator)			1	1	65535	1	
	-	Other	ChOC	TROMSW	Mode Switch (Torque Relevence)	200	ż.	200	0	206	200	
		Other	Cn-00	REFIS	Hode Switch (Speed Reference)	0	rpm.	0	0	5000	0	
	-	Other	CAGE	ACCHSW	Mode Switch (Acceleration Reference)	0	10pm/s	0	0	3000	0	
	-	Other	CAOF	ERPMSW	Mode Switch (Error Pulse)	10000	rel units	10000	0	10000	10000	
	-	Other	Cn10	JOGSPD	Jog Speed	3000	(pm	3000	0	5000	500	
	-	Other	Crite	OVERLV	Overflow Level	1024	256 rel units	1024	1	32767	1024	
	-	Other	Criff	SPEED1	Internal Set Speed (1st speed)	100	rpm	100	0	5000	100	
		Oter	Cn 20	SPEED2	Internal Set Speed (2nd speed)	200	iom .	200	0	5000	200	

ภาพที่ 3-18 การทดสอบให้มอเตอร์หมุนไปทางซ้าย-ทางขวา

Servo Jog	
Jog Speed (RPM) 1000-	
Mode Enable	
Servo Enable	
Q Q	
Jog direction is as viewed looking at the motor shaft.	
Close	

ใส่ค่าความเร็วในช่อง Jog Speed (RPM) หลังจากนั้น กด Enable แสดงดังภาพที่ 3-19

ภาพที่ 3-19 การใส่ค่าความเร็วในช่อง Jog Speed

กดปุ่ม 💽 เพื่อสั่งให้มอเตอร์หมุนตามเข็มนาฬิกา และกดปุ่ม 🗩 เพื่อสั่งให้มอเตอร์หมุนทวน เข็มนาฬิกา เมื่อทดสอบเสร็จแล้วให้กดปุ่ม Close แสดงดังภาพที่ 3-20

Se	ervo Jog
	Jog Speed (RPM) 1000
	Mode Enable
	Jog direction is as viewed looking at the motor shaft.
	Close

ภาพที่ 3-20 การสั่งให้มอเตอร์หมุนซ้าย-ขวา

3.2.4 ออกแบบลายวงจร

ภาพที่ 3-21 ขั้นตอนการออกแบบลายวงจร

3.2.4.1 วงจรแปลงสัญญาณ RS-232 เป็น สัญญาณ RS-485

การแปลงสัญญาณ RS-232 เป็น สัญญาณ RS-485 เพื่อให้ระบบรับส่งข้อมูล ระหว่างไมโครคอมพิวเตอร์ (Microcomputer) กับมัลติเปิ้ลไมโครคอลโทรลเลอร์ (Multiple Microcontroller) การส่งรับข้อมูลไม่สามารถส่งได้โดยตรงจำเป็นที่จะต้องแปลง RS-232 เป็น RS-485 จึงจะสามารถรับส่งข้อมูล ระหว่างกันได้โดยมีวงจร แปลงสัญญาณดังภาพที่ 3-22 เนื่องจากวงจรชุดนี้ ด้านนึ่งจะต่อ กับไมโครคอมพิวเตอร์และอีกด้าน ต่อเข้ากับเครือข่าย ไมโครคอลโทรลเลอร์ (Microcontroller) เพื่อป้องกันกระแสไฟฟ้ารั่วไหลผ่านไมโครคอมพิวเตอร์ โดยสามารถแยกกราวด์และแหล่งจ่ายไฟออกเป็น 2 ชุด ชุดแรกจ่ายให้กับอุปกรณ์ RS-232 ผ่าน Opto transistor ชุดที่ 2 จ่ายให้กับอุปกรณ์ RS-485

ในระบบรับส่งข้อมูลระหว่างคอมพิวเตอร์กับไมโครคอนโทรลเลอร์จะใช้การสื่อสารแบบ RS-232 แต่ข้อจำกัดของ RS-232 คือการสื่อสารเป็นแบบ Point To Point จึงจำเป็นต้องทำการแปลง สัญญาณ RS-232 เป็น สัญญาณ RS-485 เพื่อสื่อสารเป็นแบบ Multi Point ได้

ภาพที่ 3-22 วงจรแปลงสัญญาณ RS-232 เป็น สัญญาณ RS-485

ภาพที่ 3-23 ชิ้นงานจริงวงจรแปลงสัญญาณ RS-232 เป็น สัญญาณ RS-485

3.2.4.2 วงจรแยกกราวด์ระหว่างไมโครคอนโทรลเลอร์กับเซอร์โวไดร์ เนื่องจากแรงดันทางด้าน ไมโครคอนโทรลเลอร์กับแรงดันทางด้านเซอร์โวไดร์ มีความต่างศักย์กันมากจึงจำเป็นต้องแยกกราวด์ของทั้งสองออกจากกันเพื่อลดสัญญาณรบกวน และการไหลกลับของแรงดัน ซึ่งจะทำให้ไมโครคอนโทรลเลอร์เสียหายได้

ภาพที่ 3-24 วงจรแยกกราวด์ระหว่างไมโครคอนโทรลเลอร์กับเซอร์โวไดร์

ภาพที่ 3-25 ชิ้นงานจริงวงจรแยกกราวด์ระหว่างไมโครคอนโทรลเลอร์กับเซอร์โวไดร์

ภาพที่ 3-26 วงจรไฟเลี้ยง 5 โวลต์เลี้ยงคอนโทรลเลอร์

ภาพที่ 3-27 ชิ้นงานจริงวงจรไฟเลี้ยง 5 โวลต์เลี้ยงคอนโทรลเลอร์

3.2.5 เขียนโปรแกรมควบคุมการทำงานของระบบ

ภาพที่ 3-28 ขั้นตอนการเขียนโปรแกรมควบคุม

3.2.5.1.1 การคำนวณหาค่าตำแหน่งด้วยวิธี จลศาสตร์การเคลื่อนไหว

ของแขนกล 6 แกน

ภาพที่ 3-29 ระบบพิกัดสำหรับแกนหมุนทั้ง 6 แกนแขนหุ่นยนต์

i	$\alpha_i - 1$	$a_i - 1$	d_i	$ heta_i$
1	0	0	0	$ heta_1$
2	-90°	<i>a</i> ₁	d_2	θ_2
3	0	<i>a</i> ₂	d_3	θ_3
4	-90°	<i>a</i> ₃	d_4	$ heta_4$
5	90°	a_4	0	θ_5
6.	-90°	a_5	d_6	θ_6

ตารางที่ 3-1 ค่า D-H Parameters ของแขนกล 6 แกน

จากภาพที่ 3-29 แสดงระบบพิกัดสำหรับแกนหมุนทั้ง 6 แกนแขนหุ่นยนต์โดยจะสามารถแปลง เป็นแบบเดนาวิท-ฮาร์เทนเบิร์กสำหรับระบบพิกัดแขนหุ่นยนต์ ได้ดังต่อไปนี้

ก) การหาตำแหน่งปลายของแขนหุ่นยนต์ด้วยวิธีจลศาสตร์การ เคลื่อนไหวไปข้างหน้า (Forward Kinematics) โดยกำหนดให้ $a_1 = 47$ $d_2 = 15$ $a_3 = 8.3$ $a_4 = 189$ $a_5 = 5$ $d_3 = 0$ $d_4 = 110$ $d_6 = 145$ $a_2 = 290$

62

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0\\ s\theta_{1} & c\theta_{1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3-1)

$${}_{2}^{1}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & a_{1} \\ 0 & 0 & 1 & d_{2} \\ -s\theta_{1} & -c\theta_{1} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3-2)

$${}_{3}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3-3)

$${}_{4}^{3}T = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & a_{3} \\ 0 & 0 & 1 & d_{4} \\ -s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3-4)

$${}_{5}^{4}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & a_{4} \\ 0 & 0 & -1 & 0 \\ s\theta_{5} & c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3-5)

$${}_{6}^{5}T = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & a_{5} \\ 0 & 0 & 1 & d_{6} \\ -s\theta_{6} & -c\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3-6)

$${}_{6}^{0}T = {}_{1}^{0}T_{2}^{1}T_{3}^{2}T_{4}^{3}T_{5}^{4}T_{6}^{5}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} \\ r_{21} & r_{22} & r_{23} & r_{24} \\ r_{31} & r_{32} & r_{33} & r_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3-7)

เมื่อ

$$r_{11} = c_1 c_2 c_3 c_4 c_5 c_6 - c_1 c_2 c_3 s_4 s_6 - c_1 c_2 s_3 s_5 c_6 - c_1 s_2 s_3 c_4 c_5 c_6 + c_1 s_2 s_3 s_4 s_6 - c_2 s_2 c_3 c_5 c_6 + s_1 s_4 c_5 c_6 + c_4 s_1 s_6$$

$$r_{12} = -c_1c_2c_3c_4c_5s_6 - c_1c_2c_6s_4 + c_1c_2s_3s_5s_6 + c_1c_4c_5s_2s_4s_6 + c_1c_6s_2s_3s_4 + c_1s_2s_5s_6 - c_5s_1s_4s_6 + c_4c_6s_1$$

$$r_{13} = c_1 c_2 c_3 c_4 c_5 a_5 - c_1 c_2 c_5 s_3 - c_4 c_5 s_2 s_3 a_5 - c_1 c_5 s_2 s_3 + c_5 s_1 s_4 a_5$$

$$r_{14} = -c_1c_2c_3c_4s_5d_6d_4 + c_1c_2c_3a_3 + c_1c_4s_2s_3s_5d_4d_6 - c_1s_2s_3a_3 + c_1a_1 - s_1s_4s_5d_6a_4 - s_1d_3 - s_1d_4$$

$$r_{21} = c_2 c_3 c_4 c_5 c_6 s_1 - c_2 c_3 s_1 s_4 s_6 - c_2 c_6 s_1 s_3 - c_4 c_5 c_6 s_1 s_2 s_3 + s_1 s_2 s_3 s_4 s_6 - c_3 c_6 s_1 s_2 s_5 - c_1 c_5 c_6 s_4 - c_1 c_4 s_6$$

$$r_{22} = -c_2 c_3 c_4 c_5 s_1 s_6 - c_2 c_3 c_6 s_1 s_4 + c_2 s_1 s_3 s_5 s_6 + c_4 c_5 s_1 s_2 s_3 s_6 + c_6 s_1 s_2 s_3 s_4 + c_3 s_1 s_2 s_5 s_6 + c_1 c_5 s_4 s_6 - c_1 c_4 c_6$$

$$r_{23} = c_2 c_3 c_4 c_5 s_1 a_5 - c_2 c_5 s_1 s_3 - c_4 c_5 s_1 s_2 s_3 a_5$$

$$-c_3c_5s_1s_2 - c_1c_5s_4a_5$$
(3-8)

ข) การหาค่ามุมก้านโยงด้วยวิธีจลศาสตร์ผกผัน (inverse-

kinematics)

$${}^{0}_{6}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & P_{x} \\ r_{21} & r_{22} & r_{23} & P_{y} \\ r_{31} & r_{32} & r_{33} & P_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= {}^{0}_{1}T(\theta_{1}){}^{1}_{2}T(\theta_{2}){}^{2}_{3}T(\theta_{3}){}^{3}_{4}T(\theta_{4}){}^{4}_{5}T(\theta_{5}){}^{5}_{6}T(\theta_{6})$$
(3-9)

$$\begin{bmatrix} {}_{1}^{0}T(\theta_{1}) \end{bmatrix}^{-1} {}_{6}^{0}T = {}_{2}^{1}T(\theta_{2}) {}_{3}^{2}T(\theta_{3}) {}_{4}^{3}T(\theta_{4}) {}_{5}^{4}T(\theta_{5}) {}_{6}^{5}T(\theta_{6})$$
(3-10)

$$\begin{bmatrix} c_1 & s_1 & 0 & 0 \\ -s_1 & c_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & P_x \\ r_{21} & r_{22} & r_{23} & P_y \\ r_{31} & r_{32} & r_{33} & P_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = {}_6^1 T$$
(3-11)

$$-s_1 P_x + c_1 P_y = d_3 (3-12)$$

$$\rho = \sqrt{P_x^2 + P_y^2}$$

$$Px = \rho \cos \emptyset$$

$$Py = \rho \sin \emptyset$$

$$\phi = \arctan 2 \left(P_y, P_x \right)$$
(3-13)

โดย $otin=\arctan 2\left(P_{\mathcal{Y}},P_{x}
ight)$ มาจากการหาเส้นตรงด้านฉาก ของสามเหลี่ยมมุมฉาก

$$c_1 s_{\emptyset} - s_1 c_{\emptyset} = \frac{d_3}{\rho}$$
(3-14)

$$Sin(\emptyset - \theta_1) = \frac{d_3}{\rho} \tag{3-15}$$

$$Cos(\phi - \theta_1) = \pm \sqrt{1 - \frac{d_3^2}{\rho^2}}$$
 (3-16)

$$\emptyset - \theta_1 = \arctan 2\left(\frac{d_3}{\rho}, \pm \sqrt{1 - \frac{d_3^2}{\rho^2}}\right) \tag{3-17}$$

$$\theta_1 = \arctan 2(P_y, P_x) - \arctan 2\left(d_3, \pm \sqrt{P_x^2 + P_y^2 - d_3^2}\right)$$
 (3-18)

$$K = \frac{P_x^2 + P_y^2 + P_x^2 - a_2^2 - a_3^2 - d_3^2 - d_4^2}{2a_2} \tag{3-19}$$

$$\theta_3 = \arctan 2(a_3, d_4) - \arctan 2\left(K, \pm \sqrt{a_3^2 + d_4^2 - K^2}\right)$$
 (3-20)

$$S_{23} = \frac{(-a_3 - a_2 c_3)P_z + (c_1 P_x + s_1 P_y)(a_2 s_3 - d_4)}{P_z^2 + (c_1 P_x + s_1 P_y)^2}$$
(3-21)

$$c_{23} = \frac{(a_2 s_3 - d_4) P_z - (a_3 + a_2 c_3) (c_1 P_x + s_1 P_y)}{P_z^2 + (c_1 P_x + s_1 P_y)^2}$$
(3-22)

$$\theta_{23} = \arctan 2 \begin{bmatrix} (-a_3 - a_2c_3)P_z - (c_1P_x + s_1P_y)(d_4 - a_2s_3), \\ (a_2s_3 - d_4)P_z - (a_3 + a_2c_3)(c_1P_x + s_1P_y) \end{bmatrix} (3-23)$$

$$\theta_2 = \theta_{23} - \theta_3 \tag{3-24}$$

$$\theta_4 = \arctan 2(-r_{13}s_1 + r_{23}c_1 - r_{13}c_1c_{23} - r_{23}s_1c_{23} + r_{33}s_{23}) \quad (3-25)$$

$$r_{13}(c_1c_{23}c_4 + s_1s_4) + r_{23}(s_1c_{23}c_4 - c_1s_4) - r_{33}(s_{23}c_4) = -s_5$$
$$r_{13}(-c_1s_{23}) + r_{23}(-s_1s_{23}) + r_{33}(-c_{23}) = c_5$$
(3-26)

$$\theta_5 = \arctan 2 \left(s_5, c_5 \right) \tag{3-27}$$

$$s_{6} = -r_{11}(c_{1}c_{23}s_{4} - s_{1}c_{4}) - r_{21}(s_{1}c_{23}s_{4} + c_{1}c_{4}) + r_{31}(s_{23}s_{4})$$

$$c_{6} = r_{11}[(c_{1}c_{23}c_{4} + s_{1}s_{4})c_{5} - c_{1}s_{23}s_{5}] + r_{21}[(s_{1}c_{23}c_{4} - c_{1}s_{4})c_{5} - s_{1}s_{23}s_{5}] - r_{31}(s_{23}c_{4}c_{5} + c_{23}s_{5})$$

$$\theta_{6} = \arctan 2 \ (s_{6}, c_{6}) \qquad (3-28)$$

โปรแกรมควบคุมการทำงานนี้ทำการเขียนด้วยภาษาซี (C) โดยโปรแกรมนี้จะทำหน้าที่ควบคุม ไมโครคอนโทรลเลอร์ ARM 7 ทั้ง 6 ตัว ซึ่งจะให้การใช้งานเป็นไปโดยง่ายและสะดวก รวมถึงการทำ ให้มีความคล่องตัวและง่ายต่อการใช้งานจะมีการส่งค่าตำแหน่ง ไปยังตัวไมโครคอนโทรลเลอร์ ARM 7 แล้วให้ ARM7 สร้างสัญญาณพัลส์ส่งให้เซอร์โวไดร์ เพื่อให้มอเตอร์เกิดการทำงาน และจะรับเอา สัญญาณป้อนกลับ (Feedback) จากตัวไมโครคอนโทรลเลอร์ นำมาทำการคำนวณตำแหน่งและจะมี การเก็บตำแหน่งที่คำนวณเอาไว้ เพื่อที่จะกำหนดการทำงานของไมโครคอนโทรลเลอร์แต่ละตัว ระบบควบคุมการเคลื่อนที่ของแขนหุ่นยนต์ มีรายละเอียดดังต่อไปนี้

ภาพที่ 3-30 บล็อกไดอะแกรมของระบบควบคุมการเคลื่อนที่

ภาพที่ 3-31 โครงสร้างของการควบคุมแขนหุ่นยนต์

ภาพที่ 3-32 โฟลว์ชาร์ตโปรแกรมควบคุม

ภาพที่ 3-33 โฟลว์ชาร์ตโปรแกรมควบคุม

Form1	tion according the status of	table real	
File			
เลือกพอร์ต Cor - Forward Manual Mode	nect Disconnect โปรดเลือกโหมดก © Manual Mode O Auto Mode	ารทำงาน	Aito Mode
- 110	แกนที่ 1 = 0 องศา 	+ 110 + 110 + 100	สองุ่งของไฟส์
- 130		+ 130	
- 180	แกนที่ 4 = 0 องศา	+ 180	
- 180	แกนที่ 5 = 0 องศา ไ	+ 180	ข้านวนบรรกัดของได้ด ระยะรายาในการฝง
- 180	แกนที่ 6 = 0 องศา 	+ 180	Play Pause Stop
Home Send	ด่าดำแหน่งที่ส่งออก		
X 0 Y 0 Z 0		Add Point 1 Stop Add	Ext

3.2.5.2 การเขียนโปรแกรมควบคุมการทำงานของแขนหุ่นยนต์ แสดงดังภาพที่ 3-24

ภาพที่ 3-34 หน้าตาโปรแกรม

3.2.5.2.1 เลือกพอร์ตการเชื่อมต่อจากนั้นให้กดปุ่ม Connect จากนั้นเลือก โหมดการทำงานของโปรแกรมว่าจะทำงานแบบ Manual หรือ Auto แสดงดังภาพที่ 3-25

เลือกพอร์ต 🛒 กด)	(
Convect	Disconne Usasilanine Manual M Auto Mod	HARTSHITHING	หมดการทางาน	
Mode Mode	11 1 1		Auto Mode	
	1-054m	• chuuce 011 •	0 ******	
	U			
- 100	แกนที่ 2 = 0 องศา	+ 100 +		
	** **			
- 130	100101 3 = U 2440	• 130		
- 180	แกนส์ 4 = 0 องสา	+ 180		
100	unul f - O auto		ข่านานบรรทัลธองโด้ล	ระบะเวลาในการส่ง
- 150	unun 5 = 0 aven	• 180	de de ser de de la companya de la co	•
			RTWTISHWATERIZETI	
- 180	แกนส์ 6 = 0 องสา	+ 180		
,			0 Play Pa	use Stop
	ต่าสำเหหน่งที่ส่งออก			
Home Send				
Inverse Manual Mode		Add Point 1 Stop Add		Ext
X 0				
Y 0	Send2			
Z 0				

ภาพที่ 3-35 การเลือกการทำงาน

ก) สามารถปรับค่าตำแหน่งของแต่ละแกน และเลือกความเร็ว

จากนั้นกดปุ่ม Send โปรแกรมทะทำจากส่งค่าไปยังตู้คอนโทรลเพื่อสั่งให้มอเตอร์หมุน ซึ่งค่าที่ส่งไป จะอยู่ในช่อง "ค่าตำแหน่งที่ส่งออก"

ข) ปุ่ม Send2 ใช้ส่งค่าตำแหน่งที่ได้จากการคำนวณ Inverse-

Kinematic โดยการป้อนตำแหน่ง X Y และ Z

- ค) ปุ่ม Home ใช้ส่งค่าตำแหน่งเริ่มต้นให้กับทุกแกน
- ง) ปุ่ม Add Point ใช้บันทึกค่าตำแหน่งลงบน Text File เพื่อ

นำไปใช้ใน Auto Mode

จ) ปุ่ม Stop Add ใช้เมื่อต้องการสิ้นสุดการบันทึก

ภาพที่ 3-36 การเลือก Manual Mode

3.2.5.2.3 Auto Mode แสดงดังภาพที่ 3-27

- ก) เลือกโหมดการทำงานมาที่ Auto Mode
- ข) เลือก File แล้วเลือก Open หรือใช้คีย์ลัด Ctrl+O เพื่อเปิด

Text File ที่ได้จากการบันทึกค่าตำแหน่งของ Manual Mode

- ค) ช่อง "จำนวนบรรทัดของโค้ด" จะแสดงจำนวนบรรทัดของโค้ด
- ช่องระยะเวลาในการส่ง ตัวหน่วงเวลาในการส่งค่าของแต่ละจุด
- จ) ช่อง "ค่าตำแหน่งที่ส่งออก" จะแสดงค่าตำแหน่งที่ส่งออกไป
- ฉ) ปุ่ม Play ใช้เพื่อเริ่มการทำงาน
- ช) ปุ่ม Pause ใช้เพื่อหยุดการเคลื่อนที่ชั่วคราว
- ซ) ปุ่ม Stop ใช้เพื่อหยุดการทำงาน

ภาพที่ 3-37 การเลือก Auto Mode

3.2.6 ประกอบอุปกรณ์เข้าด้วยกัน

ภาพที่ 3-38 ขั้นตอนประกอบอุปกรณ์เข้าด้วยกัน

ในการสร้างแขนหุ่นยนต์ครั้งนี้ คณะผู้จัดทำได้ทำการออกแบบโครงสร้างแขนหุ่นยนต์ลงบน โปรแกรม Solid Work 2012 และได้ดำเนินการจัดสร้างแขนหุ่นยนต์ ตามแบบที่ออกแบบไว้ รวมถึง การจัดหาอุปกรณ์ต่าง ๆ ทั้งระบบแมคคานิกส์และระบบควบคุมแขนหุ่นยนต์ จากนั้นได้นำอุปกรณ์ ทั้งหมดมาทำการประกอบรวมกันโดยมีวิธีและขั้นตอนการประกอบดังนี้

ภาพที่ 3-39 การติดตั้งมอเตอร์ Join1 กับ แมคคานิกส์ Join 2

ภาพที่ 3-40 การติดตั้งมอเตอร์กับแมคคานิกส์ Join 2

ภาพที่ 3-41 การติดตั้ง Join1, Join 2, Join 3, Join 4 เข้าด้วยกัน

ภาพที่ 3-42 การติดตั้งมอเตอร์และ Join4, Join 5, Join 6, เข้าด้วยกัน

ภาพที่ 3-43 แขนหุ่นยนต์ที่ประกอบเสร็จแล้ว

ภาพที่ 3-44 การจัดวางตำแหน่งชุดอุปกรณ์ควบคุมแขนหุ่นยนต์

ภาพที่ 3-45 ชุดอุปกรณ์ควบคุมแขนหุ่นยนต์

ภาพที่ 3-46 แขนหุ่นยนต์

แผนการดำเนินโครงงาน การออกแบบและสร้างแขนหุ่นยนต์น้ำหนักเบา

(Design and Construction of Lightweight Arm Robot)

ตารางที่ 3-2 ระยะเวลาการทำ

รายละเอียดการทำงาน	ນີ.ຍ. 54		ົ່ນ.ຍ. 54			ย. 54		ก.ค. 54		เ.ค. 54		ส.ค. 54		4	ก.ย. 54		4	ต.ค. 54			q	พ.ย. 54			ธ.ค. 54			ม.ค. 55				ก.พ	. 55	5	มี.ค	n. 5!	5 เม.ย. 55				W.	.ค.	55		ນີ.ຍ	. 55	5
	1	2	3 4	1	2 3	3 4	1	2 3	3 4	1	2 3	4	1	2	3	4	1 2	3	4	1 2	2 3	3 4	1	2	3	4	1 2	3	4	1 2	2 3	4	1	2 3	3 4	1	2	3	1	1 2	3	4					
3.1 ศึกษาหาข้อมูลการสร้าง											_																													-	\square	_					
3.2 ออกแบบและทำชิ้นส่วน																																															
ต่าง ๆ ของแขนกล						1	,				6	Y																																			
3.3 จัดซื้ออุปกรณ์						ຍ 1					` ຍ)																																			
Drive ac servo motor						1					1	J																																			
3.4 ออกแบบลายวงจรพร้อม						ก					1	J																																			
ลงอุปกรณ์						ิดิ					ີດ	1																																			
3.5 เขียนโปรแกรมควบคุม						ן 1					ย	1																																			
การทำงานของระบบ						រា					ſ	ו																																			
3.6 ประกอบอุปกรณ์เข้าด้วยกัน						1					1																															—					
3.7 บันทึกการทำงาน						ค					f																																				
และข้อบกพร่อง																																															
3.8 จัดทำปริญญานิพนธ์																																								Ŧ							

แผนงานที่วางไว้ [

แผนงานที่ปฏิบัติจริง